Irregular scaling functions with orthogonal translations
نویسندگان
چکیده
منابع مشابه
Compactly Supported Orthogonal Symmetric Scaling Functions
Daubechies 5] showed that, except for the Haar function, there exist no compactly supported orthogonal symmetric scaling functions for the dilation q = 2. Nevertheless, such scaling functions do exist for dilations q > 2 (as evidenced by Chui and Lian's construction 3] for q = 3); these functions are the main object of this paper. We construct new symmetric scaling functions and introduce the \...
متن کاملScaling Functions Robust to Translations - Signal Processing, IEEE Transactions on
The discrete wavelet transform (DWT) is popular in a wide variety of applications. Its sparse sampling eliminates redundancy in the representation of signals and leads to efficient processing. However, the DWT lacks translation invariance. This makes it ill suited for many problems where the received signal is the superposition of arbitrarily shifted replicas of a transmitted signal as when mul...
متن کاملProperties of the magnitude terms of orthogonal scaling functions
The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processi...
متن کاملFunctions with orthogonal Hessian
A Dirichlet problem for orthogonal Hessians in two dimensions is explicitly solved, by characterizing all piecewise C functions u : Ω ⊂ R → R with orthogonal Hessian in terms of a property named “second order angle condition” as in (1).
متن کاملQuasi-orthogonal expansions for functions in BMO
For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.07.005